Spectroscopic validation of the pentameric structure of phospholamban.

نویسندگان

  • Nathaniel J Traaseth
  • Raffaello Verardi
  • Kurt D Torgersen
  • Christine B Karim
  • David D Thomas
  • Gianluigi Veglia
چکیده

Phospholamban (PLN) regulates calcium translocation within cardiac myocytes by shifting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) affinity for calcium. Although the monomeric form of PLN (6 kDa) is the principal inhibitory species, recent evidence suggests that the PLN pentamer (30 kDa) also is able to bind SERCA. To date, several membrane architectures of the pentamer have been proposed, with different topological orientations for the cytoplasmic domain: (i) extended from the bilayer normal by 50-60 degrees; (ii) continuous alpha-helix tilted 28 degrees relative to the bilayer normal; (iii) pinwheel geometry, with the cytoplasmic helix perpendicular to the bilayer normal and in contact with the surface of the bilayer; and (iv) bellflower structure, in which the cytoplasmic domain helix makes approximately 20 degrees angle with respect to the membrane bilayer normal. Using a variety of cell membrane mimicking systems (i.e., lipid vesicles, oriented lipid bilayers, and detergent micelles) and a combination of multidimensional solution/solid-state NMR and EPR spectroscopies, we tested the different structural models. We conclude that the pinwheel topology is the predominant conformation of pentameric PLN, with the cytoplasmic domain interacting with the membrane surface. We propose that the interaction with the bilayer precedes SERCA binding and may mediate the interactions with other proteins such as protein kinase A and protein phosphatase 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of phospholipids on the oligomeric state of phospholamban of the cardiac sarcoplasmic reticulum.

BACKGROUND Phospholamban is a reversible inhibitor of the Ca(2+)-ATPase of the cardiac sarcoplasmic reticulum (SR) and contributes to the regulation of heart muscle contractility. Because only the monomeric form, not the pentameric form, of phospholamban inhibits the Ca2+-pumping activity of the SR, it is important to understand the dynamic equilibrium between these 2 forms. METHODS AND RESUL...

متن کامل

Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump.

Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was construct...

متن کامل

On the function of pentameric phospholamban: ion channel or storage form?

Phospholamban (PLN) is an integral membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase, thereby regulating muscle contractility. We report a combined electrochemical and theoretical study demonstrating that the pentameric PLN does not possess channel activity for conducting chloride or calcium ions across the lipid membrane. This suggests that the pentameric configuration of...

متن کامل

Computational design of a water-soluble analog of phospholamban.

Membrane proteins and water-soluble proteins share a similar core. This similarity suggests that it should be possible to water-solubilize membrane proteins by mutating only their lipid-exposed residues. We have developed computational tools to design water-soluble variants of helical membrane proteins, using the pentameric phospholamban (PLB) as our test case. To water-solublize PLB, the membr...

متن کامل

Chemical approach for evaluating role of the cysteine residues in pentameric phospholamban structure: Effect on sarcoplasmic reticulum Ca-ATPase

Calcium transport into the sarcoplasmic reticulum of cardiac muscle is catalyzed by the Ca pump and regulated by phospholamban (PLB), a 52-amino acid integral membrane peptide that inhibits the pump [1]. PLB is predominantly a homopentamer on electrophoresis gels (SDS-PAGE), with only a small fraction of monomer [2]. Specific residues that influence the pentameric structure of PLB are located i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 37  شماره 

صفحات  -

تاریخ انتشار 2007